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Abstract 

 
In this paper, we first summarize the Lanchester laws and related applications to combat warfare and phase II 

counterinsurgency. Then, we examine the possibilities of modeling the interactions between counterinsurgency and 

insurgency by applying ecology models known as Lotka-Volterra systems. Two kinds of models, known as predator-

prey and interference COIN competition systems, are proposed based on the principles and guidelines deliberated 

by Drapeau et al (2008). Preliminary investigations on the criteria of coexistence and extinction are conducted. 

Contrary to the Competition Exclusion Principle (CEP), counterinsurgency and insurgency forces could coexist for 

a relatively long period, provided that the population capacity for the rebellion force is high (equivalently, the  

authority response is low), or the competition level is weak.  Computer simulations by Mathematica are conducted 

for several examples. In the last section, general models with possible response functions for future case studies are 

proposed. 

 

Brief introduction to modeling combat warfare by differential equations 

 

Modeling combat battles by differential equations can be dated back to1916 when the British 

engineer F. W. Lanchester modeled the aerial combat in WWI by applying differential equation 

systems which had been created to describe biological phenomena. Since then the Lanchester 

models have been developed into different deterministic forms and applied to the area of warfare 

modeling.  

 

It is noted that Lanchester deterministic models are applied to the current study of mobility 

capability and requirements (MCRS). Parameters and coefficients in MCRS Lanchester models 

are determined by stochastic process. Computer simulations of related Lanchester models by 

Mobility Simulator are conducted to provide insight view of warfare scenarios. 

 

In this section, we will briefly introduce the terms and theory of Lanchester deterministic 

systems and certain research findings in this area.  

 

Of the two combat sides, the side whose population reaches zero first would be considered the 

loser. There are two basic laws known as the Lanchester Square Law (aimed fire encounter) and 

Lanchester Linear Law (un-aimed fire situation).  

 

Lanchester Square Law (Aimed Fire) 

 

Consider the system of differential equations 

 

bxty

aytx





)('

)('
  (1) 



 2 

where a and b are force y’s and force x’s lethality coefficients, respectively. Assume that both 

populations x and y are positive at the beginning, i.e., the initial values 0)0( 0  xx and 

0)0( 0  yy . By separating the variables, we obtain an implicit solution equation 
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This simulation concludes that the winner of a two-sided war (aimed fire) is determined by 

comparing the initial combat populations along with the lethality of both sides. 

 

Lanchester’s Linear Law (un-aimed fire) 

 

If x’s unit can fire at rate r, then attrition suffered by y is  

xyAraty )/()('   

where a is area within area A where shooting occurs and Ara / is the lethality coefficient for 

x force. Similarly we can set up an equation for the rate of change in x force and eventually a 

system of equations as follows 
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where   is the lethality of y force. The solution for the system is 

00 yxyx    

A reasonable assumption is that both populations start positive, leading to the conclusion that 
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, provided that the product of the lethality and the initial x 

force is greater than that of y, i.e., 00 yx    

 

Engel (1954) applied the following Lanchester system to the battle of Iwo Jima and estimated 

the parameters using actual data 
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where x and y are US and Japanese troops in the island and r(t) is the rate at which US troops 

were landed. The parameters  and   have the units of “opposing casualties per man day of 

combat,” and were chosen to fit the record of what actually happened. If x is defined to be US 

troops not killed, wounded, or missing,” the best fit is with 0544.0 US casualties per 

Japanese man day and 0106.0 Japanese casualties per US man day. The model also fits the 

case in which x is defined as “US troops alive”.  

 

Engel also did similar estimates for the battle of Crete, concluding that there were 0.104 Allied 

casualties per German man day and 0.0162 German casualties per Allied man day. The Crete 
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parameters are not grossly different from the Iwo Jima parameters that held at a different place at 

a different time in a different part of the world. It is noted that earlier than Engel, the Russian M. 

Osipov did considerable work on estimating the parameters for land battles. 

 

A realistic model of the WWII U-boat war in the Atlantic assumes that submarines operate only 

in “wolf packs” and that all ships sail in escorted convoys. Morse and Kimball (1950) make the 

approximation that cn /5  merchant ships and 100/nc U-boats, will be lost when a convoy 

defended by c escorts is attacked by n submarines. Since the exchange ratio of U-boats to escorts 

was about 5/1, we will also assume that the average number of escorts lost is 500/nc . Greg 

Brown (2001) considered the destruction efficiency and adopted the following system of 

equations: 
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Using different sets of initial conditions 100,50,0 000  ESM  and 

100,500,0 000  ESM , he simulated the cases by running Matlab and concluded that over 

time, regardless of the initial amount of submarines, the allies will prevail in the Atlantic theater. 

 

Generalized Lanchester Theory for Phase II insurgency 
 

The research results mentioned above are all about combat wars within short time periods. 

Schaffer (1965) generalized the Lanchester models and applied them to model Phase II 

Insurgency, developing corresponding deterministic forms of Lanchester’s equations. 

 

According to Mao (1954), the first two phases of insurgency are characterized by ground-

yielding operations on the part of the insurgents; in the final phase, the insurgents take the 

strategic offensive. Phase II is generally a period of strategic stalemate. The insurgent operations 

become increasingly military in nature but the conflict remains localized. As necessary, the 

insurgents continue to yield ground for time and eventual strength. 

 

Taking into consideration that there are three types of force depletion (casualties): KIA, WIA, 

surrender, and desertion, we assume that the total force depletion rate is the sum of the rates from 

each of these sources.  

 

Assume that both sides are permitted supporting weapons. No supporting weapons duels are 

allowed. It is presumed that the insurgents disengage rather than participate in this type of 

activity. 
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where m and n are the number of engaged personnel on opposite sides, iW and jW are the 

supporting weapon strengths, and t is a time-like variable. It is noted that, in general, the weapon 

efficiency coefficients, nk , mk , iK  and jK are positive functions of time. 

 

M. B. Schaffer studied three cases of Phase II insurgency and established corresponding systems 

of differential equations for each case. 

 

In the case of a skirmish (with no surprise), with certain assumptions for computer simulations 

for N-force (time in minutes), M. B. Schaffer approached the solutions of the corresponding 

system for skirmish. The conclusions are charted to illustrate casualties. For example,  

 

(1) With different initial values 100;50  forceMforceN , N-force is dropped to 15 in 

5.5 minutes. 

(2) With the same initial value 50 forceMforceN , N-force dropped to 20 in 15 

minutes. 

 

In contrast to the skirmish, the ambush (with surprise factor) represents a case where the time 

dependence of the weapon efficiency coefficients is important, and perhaps dominant. This time 

dependency results from the changing cover (shielding) are available to the individuals of the 

defensive side. In an ambush, due to the surprise element, defensive cover is initially at its 

minimum. As the engagement progresses, the defense seeks whatever cover is available and 

gradually improves this situation. The attackers have a relatively secure position which remains 

constant until they choose to break off the engagement, since there is little motivation for 

defections or surrenders on the attacking side, and since the defense cannot bring its supportive 

weapons into play in the early stages of the fight. 

 

With certain assumptions for computer simulations, Schaffer successfully simulated ambush 

using computer software. For examples, 

  
(1) initial attacker force = 50, initial defender force = 100 (defender remaining force dropped 

from 100 to 87 in 42 min; attacker remaining force from 50 to 18) 

(2) initial attacker force = 50, initial defender force = 100 (defender remaining force dropped 

from 50 to 10 in 36 min; attacker remaining force from 50 to 26) 

 

In the third case, Schaffer divided siege into to three stages: (1) an initial “softening-up” phase 

where support weapons are primary (the riflemen are generally out of range), and (2) an assault 

stage where the offensive artillery barrage must be lifted. Actual solutions are given in this case. 
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Rationale on adopting ecological models to simulate COIN 

 

The success of Lanchester models on warfare is an inspiration for the task of modeling COIN by 

differential equations. We can inherit the definition of the logistic equation and terms such as 

lethality. However, we should be aware that the Lanchester theories concentrate on working for 

short-term warfare. Schaffer’s generalizations made one step forward toward modeling Phase II 

insurgency but focusing on Phase II short-term combats. Lanchester-type case studies show that 

one side of a combat declines to zero eventually. Therefore, solutions of Lanchester systems are 

decreasing all time to the end of a war.  

 

The interactions of insurgency and counterinsurgency are more complicated than that in short-

term warfare. The Lanchester laws may not be appropriate to describe the rise and fall of 

insurgency for a relatively long period of time. 

 

Drapeau el al (2008) deliberated the possibilities of simulating the interaction of insurgency and 

counterinsurgency by applying ecology models known as Lotka-Volterra predator-prey systems.  

 

In a COIN ecosystem, we can treat authority as predator and rebellion as prey within an isolated 

country or district setting. Questions are raised on whether or not such predator-prey models 

could accurately depict the interactions and relationships between authority and rebellion in a 

COIN ecosystem. Although such approaches may be too simple to simulate a real situation, it is 

worth to establish models and to analyze COIN situations using mathematical outcomes such as 

persistence. In addition, the traditional Lotka-Volterra model has been since 1920’s modified in a 

number of forms, including continuous or discrete, constant or periodic, instantaneous or delayed 

and etc. Predator-prey models have been generalized to other areas, for instance, biomedicine, 

economics and industry. Models from multiple resources could be applied to simulate COIN. 

 

There are three population variables in consideration: Authority (A), Rebellion (R), Population 

(P) with the following ecological scenario: A preys on R with counter attack R on A; both A 

and R compete for access to P (a precursor to winning support: a mean to an end). Coexistence 

of the competitors, thought unwelcome, could be discussed and used for strategic planning 

purpose. 

 

 

Logistic Equations and Environmental Capacity 

 

We will introduce and define related basic terms for modeling COIN in this section. 

 

The basic concept in a population is the intrinsic rate of growth – the per capita growth rate. Let 

)(tx be the number of members of a population at time t. Then the intrinsic rate of growth of 

)(tx is )(/)(' txtx .  

 

The simplest possible model (Malthus) would be assuming that the intrinsic growth rate be a 

constant, that is, 

0,
)(

)('
 rr

tx

tx
 or equivalently 0)()('  trxtx  (4) 
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The solutions for this differential equation have the general form
)(

0
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model indicates unbounded exponential growth. One interpretation about the model is that r is 

the difference of the birth rate and death rate of the population so that the two quantities are 

balanced to avoid unlimited growth. However this model does not serve on long-term prediction 

of a population.  

 

Taking into account the environmental capacity for a population, a more reasonable model is  
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where K is called the carrying capacity of the environment and r the maximal growth rate. An 

explicit general solution can be obtained by separating variables. It is easy to observe from the 

equation that the growth rate )(' tx is slowed down when the population )(tx is approaching the 

environmental carrying capacity. We can solve the equation by separating the variables and 

obtain 
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Considering the rebellion insurgency in a population, the simplest logistic growth for the 

rebellion force is then modeled by  KRrtR /1)('  , where r is the difference of recruiting rate 

and depletion rate (including KIA, WIA, surrender, and desertion), R represents the density of 

insurgents and K is the maximum density of recruits the population can provide.  

 

We understand that KtR )( and therefore 0)(' tR all time. With no presence of predator force, 

the density of insurgency is gradually growing to its maximum, but no more than its maximum 

since the growth rate 0)(' tR stops growing as KR  . This math discovery could be supported 

by cases in which rebellion got absolute control. For example, with the retreat of US forces in 

Vietnam, Viet Cong took over the power and mind controlled the entire country population in a 

short time period. Another example would be Taliban’s sweep when the Soviet Union gave up its 

occupation of Afghanistan.  

 

Lotka-Volterra Models for COIN 

 

We must point out that the growth of a rebellion force is based on recruiting efforts. Therefore, 

revisions are necessary as we model a COIN situation.  

 

With the presence of the predator (authority) force, the growth rate of the rebellion force is under 

control or slowed down. As a simple approach, the interactions between the two sides can be 

modeled by the following system of equations 
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where all constants dcba ,,, and e are assumed positive. Specifically, a is the intrinsic growth 

rate of )(tR without the presence of )(tA and abK / , the population maximal supportive 

capacity, c is the controlling (lethality) rate by )(tA , d is the decreasing rate of )(tA without 

)(tR , and e is the responding rate of )(tA to the presence of )(tR .  

 

In this model, if there is no threat to the authority, the equation for the growth rate )(' tR is the 

same as the logistic equation but affected as the authority is present. From the second equation, 

the authority force is extinct if there is no rebellion force. It means the authority force demand is 

gradually decreased to zero, as the rebellion force disappears. On the other hand, the need for 

authority force is growing proportionally to the product of the densities of the authority and 

rebellion forces, featured by the response constant e. 

 

Though counter-attack from rebellion force is not considered in this predator-prey type model, it 

is still meaningful taking into consideration the situation in which the authority has enough 

backup support to immediately fill up vacancies caused by rebellion’s counter-attacks.  

 

In case the response from the authority is delayed (information or operation time delay), we 

should include delay effects in our discussion by adopting delay-differential equation models. 

One simple revision from (6) is 
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where constant 0  addresses the time delay in authority response caused by distance, 

communication, and/or operation.  

 

Behavior around the equilibriums 

 

A set of constant solutions is called an equilibrium point for an ordinary differential equation 

system. To find all equilibrium points, we set the right sides of System (6) to be 0, i.e.,  
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Solving the linear equations, we obtain three equilibrium points )0,0( , )0,/( ba and
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The trivial equilibrium )0,0( is a saddle point. The conclusion can be explained by the linear part 

of System (6) 
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and its eigenvalues da  21 ,  
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For the equilibrium )0,/( ba , we make a transformation AybaRx  ,/ for System (6) and 

obtain 

exyy
b

ea
d

b

a
xedy

dt

dy

cxybxy
b

ac
axcy

b

a
xba

b

a
x

dt

dx






















































 2

 (10) 

The behavior of the equilibrium )0,0(  (corresponding to )0,/( ba ) is determined by the 
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Case I. 
e

d
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b

a
 . Both eigenvalues are negative. The equilibrium is a stable node (attractor). 

Case II. 
e

d
K

b

a
 . As both eigenvalues are nonnegative, the equilibrium is again a stable 

node. 

Case III. 
e

d
K

b

a
 . As the eigenvalues are opposite in signs, )0,/( ba is a saddle point. 

We will illustrate the behavior )0,0( and )0,/( ba as we study the possible third equilibrium point 
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Case I. 
e

d
K

b

a
 . Then the system has only two nonnegative equilibrium points )0,0( (saddle 

point) and )0,/( ba (stable node). In other words, if the authority responding ratio e is too small, 

the rebellion will defeat the authority and approaches its maximum.  
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Example 1 
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a
K . No positive equilibrium point. (0,0) and )0,80()0,/( ba

are the only nonnegative equilibrium points. The computer simulation is made possible by 

Mathematica. It shows all trajectories starting with positive values will eventually approaches 

)0,80( as a stable node. In other words, if the authority response ratio (represented by e) is low, 

the rebellion force eventually approaches its maximal population acceptance. 
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Case II. 
e
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We conclude that both KtR )( and 0)( tA eventually, given sufficient amount of time.  

 

Example 2 
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There are only two equilibriums in this case: )0,0( as a saddle point and )0,120( as a stable node. 

The following simulation is made possible by Mathematica. The solid trajectory starts at 

)200,60(),( 00 AR and eventually approaches )0,120( . The vector field of the system shows that 

no matter what initial forces the two sides begin, the rebellion force approaches its maximal 

population acceptance.  
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In the plane, above the line 0 cAbRa , 0/ dtdR , and 0/ dtdR below the line. On the 

right side of the vertical line 0 eRd , 0/ dtdA , and 0/ dtdA on the left side of the 

vertical line. The behavior of the trajectories around the positive equilibrium 
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illustrated above. However, it is not clear whether the equilibrium is a center or an attractor. 

 

We need to analyze the behavior of the trajectories near the positive equilibrium. To this end, we 
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which has (0, 0) as its equilibrium point corresponding to the positive equilibrium 
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c

ae

dt

dy

y
e

cd
x

e

bd

dt

dx













 (15) 

 

The characteristic equation of System (15) 

0det
2

2 































e

bd
ad

e

bd

c

bd

c

ae
e

cd

e

bd






 (16) 

 

has the following two roots 

2

4
22























e

bd
ad

e

bd

e

bd

  

Since ,
e

d
K

b

a
 we conclude that both eigenvalues of the characteristic equation have negative 

real parts and consequently the equilibrium point is an attractor. In other words, it is 

asymptotically stable.  
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Therefore, the rebellion and the authority forces will stay coexist approaching to its equilibrium 

in long-term run.  

 

Example 3 

)05.06(

)01.002.04(

RA
dt

dA

ARR
dt

dR





 (17) 

The positive equilibrium is )160,120(
05.0

6

02.0

4

01.0

02.0
,

05.0

6
, 



































e

d

b

a

c

b

e

d
is a stable 

node. This is a case with a high population supportive capacity.  

 

The following computer simulation for Example 3 is made possible by Mathematica. The 

trajectory is the solution curve with initial rebellion force = 60 and authority force = 200. The 

vector field shows that all possible trajectories if started with non-zero force will eventually 

approach the equilibrium (120,160). The other two equilibrium points )0,0( and

)0,200()0,/( ba are both saddle points. 

 Authority 

 
 Rebellion 

0 50 100 150 200 250

0

50

100

150

200

250
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We notice in Case III that the existence of rebellion is independent of the controlling (lethality) 

efforts by the authority, represented by c. It could be interpreted that the phenomenon of the 

rebellion existence lasts for a relatively long time period if the population’s supportive 

acceptance, represented by K, of the rebellion is high enough.  

 

We summarize our findings in the following table. 

 

 
Table 1. Behavior near equilibriums 

 

e

d
K

b

a
  

e

d
K

b

a
  

e

d
K

b

a
  

)0,0(  Saddle point Saddle point Unstable node 

)0,/( ba  Stable node Stable node Saddle point 



















e

d

b

a

c

b

e

d
,  

Non-positive Same as )0,/( ba  Stable node 

 

 

 

Interference Competition Models 

 

Another kind of ecological models favored by Drapeau et al (2008) is called interference 

competition models. They conjecture that this model may be more useful than Lotka-Volterra 

models for describing the complex conflict ecosystem of COIN. 

 

Assume both authority (A) and rebellion (R) compete for access to the neutral population (P). 

Similar to the predator-prey setups, we can establish the following competition system to 

simulate the interaction between the variables A and R. 

)(

)(

22212

12111

AaRabA
dt

dA

AaRabR
dt

dR





 (18) 

where all constant coefficients are assumed positive. Define 2,1,/  iabK iiii , then each can be 

seen as the population’s maximal acceptance for the competing component without the presence 

of its opponent. 12a can be considered as the rates of lethality of A on R and 21a  is the lethality of 

R on A, respectively. These two rates reflect the level of competition. Small 12a and 21a reflect 

low competition conflict. 

 

Simple comparisons )( 111 RabR
dt

dR
  and )( 222 AabA

dt

dA
 lead to the conclusion that the 

population for each competitor is bounded. 

 

There are four possible equilibrium points for System (18). Three are easily observed as 

)/,0(),0,/(),0,0( 222111 abab  
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Another possible equilibrium point is determined by whether or not the coefficient matrix  











2221

1211

aa

aa
A  of the linear system 

0

0

22212

12111





AaRab

AaRab
 is invertible. If it’s invertible, then the 

solution 


























2

1

1

2221

1211

*

*

b

b

aa

aa

A

R
is an equilibrium point, the only possible positive equilibrium. 

To avoid the trivial case, we assume that the matrix is invertible, in other words, the lines 

012111  AaRab  and 022212  AaRab  are not parallel. 

 

In the following, we will analyze the local behavior near each equilibrium, using the linearization 

of System (18). 

 

(0,0) is a unstable node (repeller) as its linear system has two positive eigenvalues. It means as 

long as the competition goes on, a winner or coexistence will be determined. The case that both 

competitors are extinct at the same time will not happen.  

 

At )0,/( 111 ab , we make a transformation in System (20) AyabRx  ,/ 111 and obtain  

2

222111121222111212

12

2

11

11

112
112111111111

)/(])/([

])/()[/(

yaxyayababyaabxaby
dt

dy

xyaxay
a

ba
xbyaabxababx

dt

dx





 (19) 

The linear part for (0,0) corresponding to )0,/( 111 ab  

yabab
dt

dy

y
a

ba
xb

dt

dx

)/( 111212

11

112
1





 (20) 

One of the eigenvalues 011  b and the sign for the other one 1112122 / abab  is pending 

in three cases 

111221111212

111212

111221111212

1112122

//,,//

//

//,,//

,0

,0

,0

/

babayequivalenlabab

abab

babalyequivalentabab

if

if

if

abab





















  

In the first and second cases, 0/ 1112122  abab  as 111212 // abab  . The equilibrium 

)0,/( 111 ab is a stable node. In the third case )0,/( 111 ab is a saddle point as 111212 // abab  , 

equivalently 111221 // baba   

 

By symmetry, we have similar conclusions for equilibrium )/,0( 222 ab : 022  b and 

0/ 2221211  abab  as 222121 // abab  , equivalently 112222 // baba  . The equilibrium

)/,0( 222 ab is a stable node. If 222121 // abab  , equivalently, 112222 // baba  then )/,0( 222 ab is 

a saddle point.  
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The last equilibrium point is the intersection of the lines 012111  AaRab  and

022212  AaRab . If the two lines are not parallel, then the lines have a unique intersection. 

By comparing the slopes of the two lines, we have the following two cases: 

Case I . AR MM  , i.e.,
221

222

111

112

/

/

/

/

ba

ba

ba

ba
 , equivalently, 21122211 aaaa  , or 

Case II . AR MM  , i.e.,
221

222

111

112

/

/

/

/

ba

ba

ba

ba
 , equivalently, 21122211 aaaa   

However whether or not the location of the intersection is in the first quadrant is determined by 

more comparisons as shown in Figures (a) through (d) below 

 

112 / ba  222 / ba  

 

222 / ba  112 / ba  

 

 

 

 111 / ba  221 / ba  221 / ba    111 / ba  

  Figure (a)      Figure (b) 

 

112 / ba  

112 / ba  

222 / ba  222 / ba  

 

 

 

 221 / ba  111 / ba  221 / ba 111 / ba  

  Figure (c)      Figure (d) 

 

 

 

222 / ba  

222 / ba  

112 / ba  112 / ba  

 

 

 

 111 / ba  221 / ba  111 / ba  221 / ba  

  Figure (e)      Figure (f) 

 

In Figure (a), it is required that 112222 // baba  and 221111 // baba  , equivalently  

121222 // bbaa  and 112112 // aabb  . All three inequalities can be combined into one double 

inequality 1121121222 /// aabbaa  . This inequality is only possible in Case I, 21122211 aaaa  . 
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Symmetrically, Figure (b) is held if 1121121222 /// aabbaa  , affiliated with Case II,

21122211 aaaa  . 

 

An analytic solution for the intersection confirms the conclusions for the situation illustrated in 

Figures (a) and (b). Furthermore, we can us the solution to find out the conditions for the 

situations when the intersection falls out of the first quadrant. Explicitly, the intersection, in 

general form, is given by 

 




































































211121

212122

21122211

2

1

1121

1222

21122211

2

1

1

2221

1211

1

1

*

*

baba

baba

aaaa

b

b

aa

aa

aaaa

b

b

aa

aa

A

R

 (21) 

 

For the intersection to be out of the first quadrant, it is necessary that two components are 

opposite in signs, i.e., 0))(( 211121212122  babababa . There are two possibilities in this case: 

0&0 211121212122  babababa  or 0&0 211121212122  babababa  

 

Simple algebraic changes show that 0&0 211121212122  babababa are equivalent to 

121121121222 //&// bbaabbaa  . Therefore the intersection is located in the second quadrant 

in the case 0&0 211121212122  babababa  when 21122211 aaaa   and in the fourth quadrant 

when 21122211 aaaa  .  

 

From the above arguments and using the symmetry of the system, we summarize six possibilities 

of the location of the non-trivial intersection *)*,( AR when the two lines are not parallel. 

 
Table 2. Location criteria of the non-trivial equilibrium 

Slope 

comparison 

Coefficient 

Response 

Condition Intersection 

Location 

Figure 

RA MM   21122211 aaaa   1121121222 /// aabbaa   Quad I (a) 

RA MM   21122211 aaaa   1121121222 /// aabbaa   Quad I (b) 

RA MM   21122211 aaaa   1211211222 /}/,/{ bbaaaaMin   Quad II (c) 

RA MM   21122211 aaaa   1211211222 /}/,/{ bbaaaaMax   Quad IV (d) 

RA MM   21122211 aaaa   1211211222 /}/,/{ bbaaaaMin   Quad IV (e) 

RA MM   21122211 aaaa   1211211222 /}/,/{ bbaaaaMax   Quad II (f) 

  

We now deliberate the phase portrait for the first two cases when a positive equilibrium *)*,( AR

exists.  
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Condition 1121121222 /// aabbaa   implies the existence of a positive equilibrium point 

*)*,( AR  and also the coefficient response 21122211 aaaa  that suggests strong competitions 

between the competitors R and A. The positive equilibrium is an unstable node. In other words, 

either authority or rebellion will eventually win the competition and expand to its maximum. The 

other side will be defeated.  

 

On the other hand, 1121121222 /// aabbaa  indicates weak competitions so that both can 

coexist. In the case of weak competition, both sides will coexist in long term run.  

 

We can summarize the classifications of all equilibriums in the following table when the positive 

equilibrium exists. 

 
Table 3. Behavior near equilibriums 

Condition 

/Figure 

Competing 

Level 

(0,0) )0,/( 111 ab  )/,0( 222 ab  *)*,( AR  

1121121222 /// aabbaa   

Figure (a) 

Strong  Unstable 

node 

Stable node 

111221 // baba 

 

Stable node 

112222 // baba 

 

 

Unstable 

node 

1121121222 /// aabbaa 

Figure (b) 

Weak  Unstable 

node 

Saddle point 

111221 // baba   

 

Saddle point 

112222 // baba   

Stable 

node 

 

 

A A 

 

 

 

 

   

  

 

 

       

 

  

 

 

 R R 

 

 Strong competition   Weak competition 

 

 

We now simulate the two cases by applying Mathematica to two selected examples. 



 19 

 

Example 4 

)02.007.04(

)06.001.02(

ARA
dt

dA

ARR
dt

dR





  (22)  

System (22) is a case of strong competition with equilibriums ),200,0(),0,200(),0,0( and )25,50( . 

 

Authority 

 
 Rebellion 

 

Four trajectories, starting from different positive initial values, turn away from the positive 

equilibrium and approach either )0,200( or )200,0( . This example supports the claim that under 

strong competition, either rebellion or authority force dies out.  

 

 

0 50 100 150 200 250

0

50

100

150

200

250
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Example 5 

)08.004.08(

)02.006.06(

ARA
dt

dA

ARR
dt

dR





  (23)  

System (23) is a case of weak competition with equilibriums ),100,0(),0,100(),0,0( and )60,80( . 

 

Authority 

 
              Rebellion 

 

Four trajectories, starting from different positive initial values, approach the positive equilibrium. 

This example shows that under weak competition, both rebellion and authority forces survive for 

a relatively long period. 

 

 

0 20 40 60 80 100 120

0

20

40

60

80

100

120
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Conclusions and Discussion 

 

In the last two sections, we have proposed the predator-prey type and interference authority-

rebellion competition models and conducted preliminary investigations on the extinction and 

coexistence of authority and rebellion forces.  

 

In the predator-prey type system, under the assumption that the authority has enough backup 

reserves, we find that if the authority responding ratio e is too low, the rebellion finally reaches 

its maximal allowed capacity from the population. On the other hand, if the neutral population 

support to the insurgency force is strong enough, coexistence of both forces is observed, no 

matter what authority military lethality is. The fact reaffirms that winning the neutral population 

is the key to the counterinsurgency. 

 

In the interference COIN competition models, we observe that under strong competition, one of 

the two competitors, either authority or rebellion, loses the competition eventually. However 

coexistence is possible in weak competition level. 

 

The above two kinds of COIN models work fine in simplified situations and can be used for 

qualitative scenario description. More general models are needed for future case studies. 

 

Consider the general rebellion-authority predator-prey type system 

 

),(

),()(

ARedA
dt

dA

ARRf
dt

dR









 (24) 

 

where )(Rf is the rate of change in the absence of authority )(tA , ),( AR is the rate of 

predation, d is the mortality rate of the predator, or decreasing rate of authority without )(tR , e is 

the authority’s attacking efficiency. We assume that the authority force use is limited only by its 

rebellion. To make it simpler and easy to handle, we assume that the rate at which authority takes 

on rebellion depends only on the rebellion density, and independent of the density of authority. 

Then System (24) becomes 

 

)(

)()(

ReAdA
dt

dA

RARf
dt

dR









 (25) 

 

where )(R is called the functional response of predators. It is reasonable to assume that the 

response is zero with no appearance of rebellion force and growing steadily to its maximal 

lethality level as the rebellion force increases. As an attempt, we adopt so called Holling Type II 

response (also known as Michaelis-Menton response), a proved popular response in ecology, and 
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assume that )(R satisfies the following conditions: 0)('',0)(',0)0(  RR  . An example of 

the Holling Type II response function is 
R

aR
R




1
)(  

 )(R  

 

 a 

 

 

 

R 

Holling Type II response function can also be applied to interference competition models. We 

noticed that in the interference competition model, the interaction among the competitors and the 

neutral population is not involved. Gen. Rene Emilio Ponce, Defense Minister of El Salvador 

during the 1980’s, was quoted that 90% of the country’s counter insurgency success is political, 

social, economic and ideological and only 10% military (B. Hoffman (2004)). Similarly Galula 

(1964) proposed the 80/20 Rule (D. Kilcullen (2007)): Essential though it is, the military action 

is secondary to the political one, its primary purpose being to afford the political power enough 

freedom to work safely with the population. A revolutionary war is 20% military action and 80% 

political is a formula that reflects the truth. 

 

According to the RAND research data of six selected COIN case studies (A. Rabasa et al (2007), 

Table S.1), high ratio of population supporting COIN (therefore low ratio supporting 

insurgency), not the military lethality, is the most important key factor to COIN wins.  

 

Taking into consideration winning the neutral population in a counterinsurgency operation, we 

should consider adopting an additional equation to address the rate of change of the neutral 

population in a study of modeling interference COIN competitions. For example, we can adopt 

the following system of equations to simulate the interactions among the neutral population (P), 

rebellion (R) and authority (A) 

 

)]([

)]([

)()(1

222212

121111

21

PAaRabA
dt

dA

PAaRabR
dt

dR

PAPR
K

P
rP

dt

dP





















 (26) 

 

where P, R and A denote the densities of the neutral population, rebellion force and authority 

force, respectively; r is the maximal intrinsic growth rate of the neutral population; )(1 P and 

)(2 P are response functions from rebellion and authority forces, respectively; K is the maximal 

capacity of the neutral population. We can also adopt Holling II responses for System (26) 
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



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


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
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dP

cP
AaRabA

dt

dA

bP

aP
AaRabR

dt

dR

dP

cAP

bP

aRP

K

P
rP

dt

dP

1

1

11
1

22212

21111
 (27) 

 

For future case studies of COIN operations using interference competition models, we must be 

cautious on the following limitations and assumptions: 

 

 The whole system must be closed with no migration.  

 Majority of a population are neutral.  

 Reliable COIN data are hard to obtain. 

 

The last but important is that mathematical models are not reality due to oversimplifications and 

therefore can only serve as an admittedly crude framework for understanding fundamental 

components of COIN warfare (Drapeau et al 2008). 
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